miércoles, 12 de noviembre de 2008

Metodos para datar rocas y fosiles



Método del carbono 14
Las técnicas de datación con radiocarbono, desarrolladas en un primer momento por el químico estadounidense Willard Frank Libby y sus colaboradores de la Universidad de Chicago en 1947, suelen ser útiles para la datación en arqueología, antropología, oceanografía, edafología, climatología y geología reciente.
Por medio de la actividad metabólica, el nivel de carbono 14 en un organismo vivo se mantiene en equilibrio la atmósfera o con el de otras partes de la reserva dinámica terrestre, como el océano. A partir de la muerte del organismo, el isótopo radiactivo empieza a desintegrarse a un ritmo conocido sin ser reemplazado por el carbono del dióxido de carbono atmosférico. Su rápida desintegración limita, en general, el periodo de datación a unos 50.000 años, aunque a veces se extienda el método hasta 70.000 años. La incertidumbre de la medida aumenta con la antigüedad de la muestra.
Aunque el método se adapta a una gran variedad de materiales orgánicos, su precisión depende del valor usado para la vida media de las variaciones en las concentraciones atmosféricas de carbono 14 y de la contaminación. En 1962, la vida media del radiocarbono fue redefinida desde 5.570 ± 30 años a 5.730 ± 40 años; por ello, algunas determinaciones anteriores requieren un ajuste, y debido a la radiactividad introducida en los últimos años en la atmósfera, las dataciones de radiocarbono se calculan desde 1950. La escala temporal del carbono 14 contiene otras fuentes de incertidumbre que pueden producir errores entre 2.000 y 5.000 años. El problema más grave es la contaminación posterior al depósito, que puede estar causada por filtración de agua subterránea, por incorporación de carbono más antiguo o más joven, y por captación de impurezas en el terreno o en el laboratorio.

Método del potasio-argón
Se aprovecha la desintegración del potasio radiactivo a argón para la datación de rocas. También se produce la transformación del potasio 40 en calcio 40, pero no es útil en este caso. Los geólogos pueden datar muchas muestras con este sistema debido a la abundancia del potasio en micas, feldespatos y hornblendas. El derrame de argón es problemático si la roca ha sido expuesta a temperaturas superiores a 125 °C; en tal caso, la edad calculada será la del último calentamiento y no la de la formación original.

Método del rubidio-estroncio
Usado en la datación de antiguas rocas terrestres ígneas y metamórficas así como de muestras lunares. Este método se basa en la desintegración beta de rubidio 87 a estroncio 87. Se suele usar para verificar fechas calculadas con potasio-argón, debido a que el estroncio derivado no se difunde tras un calentamiento suave como hace el argón.

Métodos con torio 230
Los métodos basados en la proporción de torio se utilizan en dataciones de sedimentos oceánicos demasiado antiguos para poder utilizar las técnicas con radiocarbono. Con el tiempo, el uranio del agua del mar decae en el isótopo torio 230 (también llamado ionio) que se precipita en los sedimentos del fondo oceánico. Puesto que se ha desintegrado durante más tiempo, los científicos detectan una disminución de la concentración en niveles superiores, se puede desarrollar una escala temporal.
El torio 230, que forma parte de la serie de desintegración del uranio 238, tiene una vida media de 80.000 años. La del protactinio 231, derivado del uranio 235, es de 34.300 años. Ambos elementos precipitan con las mismas proporciones pero a velocidades diferentes. Su relación varía con el tiempo, mostrando diferencias mayores en los sedimentos más antiguos.
El método de datación del ionio-torio, aplicado a muestras del fondo marino formadas en los últimos 300.000 años, se basa en el supuesto de que el contenido inicial de ionio en los sedimentos acumulados ha permanecido constante en toda la sección estudiada y que no deriva de la desintegración de uranio. La antigüedad de la muestra depende del exceso de ionio, ya que éste decrece con el tiempo.
En el método del déficit de ionio, el cálculo de la edad de un fósil de concha o coral, entre 10.000 y 250.000 años, se basa en el aumento de ionio hacia un equilibrio con el uranio 238 y 224, que entran en el carbonato poco después de su formación o entierro. Se pueden usar relaciones de desequilibrio similares para evaluar edades de carbonatos en tierra; esta técnica es un complemento de la metodología del carbono 14.

Métodos con plomo
La edad plomo-alfa se estima determinando, con técnicas espectrográficas, el contenido total de plomo y de radiactividad alfa (derivada de la transición uranio-torio) en concentrados de circón, monacita o xenotima. El método plomo-alfa, o de Larsen, se aplica en rocas posteriores al precámbrico. En la técnica del uranio-plomo, la antigüedad de un material geológico se calcula basándose en la velocidad conocida de la transformación radiactiva de uranio 238 en plomo 206 y de uranio 235 en plomo 207. Emparejándolo con el ritmo de desintegración de torio 232 en plomo 208, se pueden obtener tres medidas independientes de la edad de una misma muestra. La razón entre las concentraciones calculadas de plomo 206 y 207 se convierte en una edad llamada plomo-plomo. Este método se aplica mejor en materiales precámbricos. Además, se puede calcular una edad uranio-uranio, derivada de la proporción entre uranio 235 y 238, calculada como un subproducto de la técnica de datación del uranio-torio-plomo.

Datación por trazas de fisión
Esta técnica, también conocida como método de las trazas de fisión espontánea, se sirve de los rastros de las trayectorias de partículas nucleares en un mineral por la fisión espontánea de impurezas de uranio 238. La edad se calcula determinando la razón entre las densidades de trazas de fisión espontánea y las de fisión inducida. Este método proporciona los mejores resultados en micas, tectitas y meteoritos. Se ha usado para asistir en dataciones de 40.000 a 1 millón de años, intervalo no cubierto por las técnicas del carbono 14 y del potasio-argón. Sin embargo, las rocas sometidas a altas temperaturas o a bombardeo de rayos cósmicos pueden producir fechas erróneas.

martes, 4 de noviembre de 2008

Cambio Ambiental


El Sistema Terrestre es un conjunto de sistemas acoplados que se comporta como uno único y autorregulado. De manera creciente, los científicos reconocen a la Tierra como un sistema complejo y sensible, que comprende componentes físicos, químicos, biológicos y humanos.

En términos de algunos parámetros ambientales claves, el Sistema se ha movido fuera de la gama de la variabilidad natural exhibida en el pasado. Los cambios no se restringen al calentamiento global y al sostenido incremento de concentraciones atmosféricas de gases de efecto invernadero de origen antropogénico. Estudios recientes de las superficies terrestres, los océanos, las costas, la diversidad biológica, el ciclo del agua y de los ciclos biogeoquímicos muestran, también, que las actividades humanas están generando cambios que van más allá de la natural variabilidad y con ritmos que continúan acelerándose.

El cambo ambiental global es el conjunto de transformaciones biofísicas de las superficies terrestres, los océanos y la atmósfera conducidas por actividades humanas y procesos naturales. Dichas transformaciones tienen lugar en el ámbito local, regional y global y afectan la calidad de vida humana y el desarrollo sostenible en la más amplia escala.

Diversos procesos de cambio ambiental global se están desarrollando en forma concurrente y manifestándose de manera más o menos simultánea a lo largo y ancho del planeta: el calentamiento global y el consecuente cambio climático, la desertificación, el incremento de las migraciones, la transformación industrial, cambios en el uso del suelo, en la cubierta terrestre, en seguridad alimentaria, la disponibilidad de agua dulce, el riesgo, la vulnerabilidad, la capacidad de adaptación, etc.

La investigación y el estudio del cambio ambiental global se enfrentan a una
compleja problemática condicionada, fundamentalmente, por la diversidad de procesos que componen el mismo, la multiplicidad de aspectos que deben ser considerados (biofísicos, económicos, sociales, ambientales, institucionales, culturales, etc.) y las interacciones entre los mismos y con su entorno, en el cual la dimensión humana constituye el principal factor determinante.

Aunque diversos cambios irreversibles en el sistema terrestre fueron inicialmente identificados y estudiados en el ámbito de las disciplinas de las ciencias naturales, ello no era suficiente. La investigación y el estudio de la dimensión humana del cambio ambiental global toma en cuenta, también, las interacciones entre dichos cambios y los procesos socioeconómicos, políticos y culturales globales en los cuales se enmarcan.

Para entender y explicar la problemática de una manera más comprensiva y desarrollar estrategias de respuesta que sean factibles desde un punto de vista económico, político, social y cultural, el ser humano debe estar puesto en el centro del análisis.

martes, 21 de octubre de 2008

Principio de Hardy-Weinberg


En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy-Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.
En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.

Radiacion adaptativa


La radiación adaptativa o evolución divergente es un proceso que describe la rápida especiación de una o varias especies para llenar muchos nichos ecológicos. Este es un proceso de la evolución cuyas herramientas son la mutación y la selección natural.
La radiación adaptativa ocurre con frecuencia cuando se introduce una especie en un nuevo ecosistema, o cuando hay especies que logran sobrevivir en un ambiente que le era hasta entonces inalcanzable. Por ejemplo, los pinzones de Darwin de las islas Galápagos se desarrollaron de una sola especie de pinzones que llegaron a la isla. Otros ejemplos incluyen la introducción por el hombre de mamíferos predadores en Australia, el desarrollo de las primeras aves que repentinamente tuvieron la capacidad de expandir su territorio por el aire, o el desarrollo del lungfish durante el Devónico, hace cerca de 300 millones de años.
La dinámica de la radiación adaptativa es tal que, dentro de un corto período de tiempo, muchas especies se derivan de una o varias especies ancestros. De este gran número de combinaciones genéticas, sólo unas pocas pueden sobrevivir con el pasar del tiempo. Tras el rápido desarrollo de muchas especies nuevas, muchas o la mayoría de ellas desaparecen tan rápidamente como aparecieron. Las especies sobrevivientes están casi completamente adaptadas al nuevo ambiente. El auge y caída de las nuevas especies está actualmente progresando muy lentamente, comparado con el brote inicial de especies.
Hay tres tipos básicos de radiación adaptativa. Estas son:
Adaptación general. Una especie que desarrolla una habilidad radicalmente nueva puede alcanzar nuevas partes de su ambiente. El vuelo de los pájaros es una de esas adaptaciones generales.
Cambio ambiental. Una especie que puede, a diferencia de otras, sobrevivir en un ambiente radicalmente cambiado, probablemente se ramificará en nuevas especies para cubrir los nichos ecológicos creados por el cambio ecológico. Un ejemplo de radiación adaptativa como resultado de un cambio ambiental fue la rápida expansión y desarrollo de los mamíferos después de la extinción de los dinosaurios.
Archipiélagos. Ecosistemas aislados tales como islas y zonas montañosas, pueden ser colonizados por nuevas especies las cuales al establecerse siguen un rápido proceso de evolución divergente. Los pinzones de Darwin son ejemplos de una radiación adaptativa que ocurrió en un archipiélago