martes, 14 de octubre de 2008

RNA y el origen de la vida



Teoría científica sobre el origen de la vida
Los polinucleótidos se forman en la Arcilla de la misma forma en que lo hacen los polipéptidos. Se cree que el RNA fue la primera molécula informativa que evolucionó en la progresión hacia la primera célula. Las proteínas y el DNA vinieron después. Una de las características más sorprendentes del RNA es que con frecuencia posee propiedades catalíticas. El RNA catalítico o ribozima, funciona como enzima. En las células de la actualidad se utiliza como auxiliar en el procesamiento de los productos finales: rRNA, tRNA y mRNA. Antes de la evolución de las células verdaderas es probable que este RNA haya catalizado la formación de RNA en la arcilla o estanques rocosos poco profundos. Si se agregan bandas de RNA a un tubo de ensayo con nucleótidos de RNA, la replicación puede ocurrir en ausencia de enzimas. Esta reacción se incrementa si se agrega zing como catalizador. El lector recordara que este metal se encuentra en la arcilla.
El RNA también puede dirigir la síntesis de proteínas. Algunas moléculas de cadena sencilla de RNA se pliegan sobre si mismas por la interacción de los nucleótidos que componen la cadena. En ocasiones la conformación de la molécula plegada provoca que el enlace con los aminoácidos sea débil. Si las moléculas de RNA provocan el acercamiento entre los aminoácidos, entonces éstos pueden enlazarse entre si y dar lugar a un polipéptido.
En las células vivas, se transfiere información del DNA al RNA y de éste a las proteínas. Se ha estudiado el mecanismo probable de la evolución del RNA y de las proteínas. El último paso de evolución de las moléculas de información seria la incorporación del DNA en los sistemas de transferencia de información. Como el DNA es una doble hélice, es más estable y menos reactivo que el RNA. Sin embargo, el RNA es necesario en cualquier forma, debido a que el DNA no es catalítico.
Hay varios pasos fundamentales previos a la formación de células vivas verdaderas, a partir de agregados macromoleculares. Hoy en día se tiene poca información acerca de la forma en que esto ocurrió. Por ejemplo, ¿Cómo se originó el código genético? Ello debe ocurrido en una etapa muy temprana del origen de la vida, ya que prácticamente todos los organismos vivos poseen el mismo código. Por otro lado, podría cuestionarse la forma en que una membrana formada por lípidos y proteínas puede envolver a un complejo macromolecular, permitiendo la acumulación de algunas moléculas y la exclusión de otras.

Experimentos Miller y Urey



El experimento de Miller-Urey representa la primera demostración de que se pueden formar espontáneamente moléculas orgánicas a partir de sustancias inorgánicas simples en condiciones ambientales adecuadas.
En 1953[1] Stanley L. Miller (1930-2007), un estudiante de doctorado de la Universidad de Chicago propuso a su director Harold Urey, realizar un experimento para contrastar la hipótesis de Aleksandr Oparin y J. B. S. Haldane según la cual en las condiciones de la Tierra primitiva se habían producido reacciones químicas que condujeron a la formación de compuestos orgánicos a partir de inorgánicos, que posteriormente originaron las primeras formas de vida. Urey pensaba que los resultados no serían concluyentes pero finalmente aceptó la propuesta de Miller. Diseñaron un aparato en el que simularon algunas condiciones de la atmósfera de la Tierra primitiva. El experimento consistió, básicamente, en someter una mezcla de metano, amoniaco, hidrógeno y agua a descargas eléctricas de 60.000 voltios. Este experimento dio como resultado la formación de una serie de moléculas orgánicas, entre la que destacan ácido acético, ADP-Glucosa, y los aminoácidos glicina, alanina, ácido glutámico y ácido aspártico,este experimento fue clave para comprobar la teorìa de Oparìn y Haldane[1] [2] usados por las células como los pilares básicos para sintetizar sus proteínas.
En el aparato se introdujo la mezcla gaseosa, el agua se mantenía en ebullición y posteriormente se realizaba la condensación; las sustancias se mantenían a través del aparato mientras dos electrodos producían descargas eléctricas continuas en otro recipiente.
Después que la mezcla había circulado a través del aparato, por medio de una llave se extraían muestras para analizarlas. En éstas se encontraron, como se ha mencionado, varios aminoácidos, un carbohidrato y algunos otros compuestos orgánicos.
El experimento realizado por Miller y Urey indicó que la síntesis de compuestos orgánicos, como los aminoácidos, fue fácil en la Tierra primitiva. Otros investigadores –siguiendo este procedimiento y variando el tipo y las cantidades de las sustancias que reaccionan- han producido algunos componentes simples de los ácidos nucleicos y hasta ATP[cita requerida].
Esta experiencia abrió una nueva rama de la biología, la exobiología. Desde entonces, los nuevos conocimientos sobre el ADN y el ARN, el descubrimiento de condiciones prebióticas en otros planetas y el anuncio de posibles fósiles bacterianos encontrados en meteoritos provenientes de Marte, han renovado la cuestión del origen de la vida.

Factores que limitan el aumento de la poblacion



Dependientes del sexo
Son las conductas diferentes entre machos y hembras, independientemente de la causa. Ejemplo: los mosquitos (Culex pipiens) cuyas hembras son hematófagas, mientras que los machos no.
Efecto de grupo
Cuando animales de la misma especie forman grupos condicionan modificaciones de conducta y morfológicas. Ejemplo: los ortópteros migradores como la Locusta migratoria; un individuo solitario que se incorpora al grupo (desencadenando factores abióticos) genera una serie de cambios como la forma o velocidad de crecimiento, aumento de fecundidad o apetito. Asimismo, los factores de grupo tienen gran importancia entre los insectos con hábitos sociales, como las abejas, hormigas o termitas.
Los factores efecto de grupo condicionan modificaciones morfológicas y de conducta
Competición
Cuando dentro de una población aumenta el número de individuos efectivo, acercándose al máximo que el medio puede soportar, se desencadena una lucha por el alimento y el espacio. La competencia intraespecífica pone entonces en marcha un mecanismo de autorregulación, por la cual un aumento de mortalidad implica una disminución de la fecundidad.
Un efecto competición se manifiesta cuando se produce un aumento del número de individuos, que provocará una lucha por el alimento y el espacio
Si la competición es extrema puede traducirse incluso en canibalismo, tanto de adultos como de crías. La competencia tiene su manifestación en la defensa del territorio, sea por parejas o grupos, o mediante el establecimiento de jerarquías sociales; ejemplo, los lobos o ciervos, que mantienen fuera de la reproducción a cierto número de machos.
Nicho ecológico
De las relaciones de competición se desprende un concepto básico en ecología, el llamado nicho ecológico, es decir, la función que el organismo desempeña en su comunidad, o el conjunto de características ecológicas o condiciones de existencia de una especie, referidas a modo, y tipo de alimentación, zonas de reproducción, etc.
Dos especies que vivan en un mismo territorio no pueden ocupar o disponer del mismo nicho ecológico, en ese caso una de ellas quedaría eliminada por competición. Nicho ecológico no debe confundirse con lugar o espacio determinado, pues se trata únicamente de un concepto funcional; en ecología, al lugar o espacio concreto en que habita una especie determinada se le denomina hábitat.